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ELASTIC PROBLEM OF A WIRE-WOUND CYLINDER
By Chester Snow

ABSTRACT

The elastic problem here treated is that of an infinitely long circular cylinder
around which is wrapped an endless set of equal wires, equally spaced, with
given tension. The deformation in cylinder and wires is found after determining
the pressure distribution and the shape and size of the contact surface between
a wire and the cylinder. The latter are found by a method which is a natural
extension of Hertz's theory of contact. The contact surface is a ring of finite

length instead of an infinitesimal ellipse as in Hertz's method so that the integral

equation determining the pressure function and its range is in this case a loga-
rithmic potential instead of a Newtonian one. Numerical application is made
to measurements on a precision standard of inductance, which is a single layer
coil on a porcelain cylinder. It is concluded that errors due to deformation of

wire and cylinder will be negligible in the computation of the inductance pro-
vided that the over-all diameter is measured after winding.
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I. INTRODUCTION

A very long circular cylinder of known unstressed radius a is

uniformly wound with circular turns of wire of spacing 2 -w p. The
unstressed radius of the wires p and their tension T being given, the
deformation in wires and cylinder is desired. This problem arises in

connection with absolute electrical measurements which are based
upon the computed inductance of a single-layer solenoid. The
solution here presented gives the elastic displacement and stresses

to the first order inclusive in the small ratio — • Formal solutions of
a

the equations of elastic equilibrium in wires and cylinder being
obtained, the satisfaction of the boundary conditions and the ex-

pression of contact lead to an integral equation (of the logarithmic
potential type) for the determination of the pressure distribution
between wire and cylinder and the shape and size of the contact
dent.
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II. FUNDAMENTAL EQUATIONS

[Vol. 7

If o and E denote Poisson's ratio and Young's modulus, respectively,
the cylindrical components ur u$ and uz of the elastic displacement
must satisfy the three equations of equilibrium

g +(1-2.)W,-5-!£»-0

FV
2,'. uo

,
2bur

5A

^+ (l-2,)}V^--
+r2 „

bz

=

Kl-2o-)AX =

(1)

where the dilatation A is
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The stress components are derived from the displacement by the
formulas

rr =
E

zz

1 + o-l "2(7

E

cr
, bur

dr

fr»g
1

rZ
~2(l+a)\dr + 'bz~

1 + o-j -2(T dz
T0 :

E \6ub Ue 1 dur
]

2(1 + 0-) [dr ~r
+
r~Wl (3)

l + o|l-2o
Ai"

r r 50 J"
2

2(l+o)[d2 r 50

In the case where 1^ = while ur and uz are independent of 0, a dis-

placement satisfying the equations of equilibrium may be derived
from a stress function % which satisfies

V4z=V2V2
x — (where x is independent of 0)

by the formulas
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In this case the dilatation is given by
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and the stress components are

OZ

zz T0 = O

53
*v x .20 =

(7)

The foregoing equations are appropriate in considering the stress and

strain in the cylinder. ,

In considering the elastic equilibrium of a torus or single turn ol

circular wire which is wrapped tightly around an elastic circular cylin-

der whose unstressed radius is a, we have to find a displacement satis-

fying the equations of equilibrium and such that the stresses derived

from it reduce to a normal pressure at the boundary of the wire. It

is convenient to use in this case the coordinates p, ft and instead ot

the cylindrical coordinates r, z, and where p, are plane polar coor-

dinates of any section of the wire made by a plane through the

z-axis The single turn of wire when unstressed is the torus gener-

ated by rotating about the 2-axis the circle whose equation in the

r, z plane (or any plane 0-const) is (r-a )
2 + 2

2 = Po
2 where Po is the

radius of the wire and a is the initial r-coordmate of the center ol its

section and less than a + Po . The origin for the plane polar coordi-

nates is the point r = a0) z = 0, so that the equation of the wire section

when unstressed is p = Po . The angle P will be taken as zero at the

point of the section nearest the 2-axis and will range from -tt to tt.

(See fig. 1.) We may imagine the very long elastic circular cylinder

of unstressed radius a which is greater than Oo-po, subjected to a

uniform hydrostatic pressure on its convex surface, which is sumcient

to compress its radius from a to aQ
- Po so that it will just slip into the

ring of wire. When this is done and the two ends of the cylinder are

a great distance from the wire, the hydrostatic pressure may be

imagined to be removed from the cylinder, which, by expansion, puts

the wire under tension whose average value T=^-^j
J
T d S taken

over the wire section will be considered as known and this will ulti-

mately determine a .

Any particle of the wire whose coordinates were p, p, 0, moves to a

point whose coordinates are p+ up (p, p), P+ -up (p, p), 0+-ue (p, P, 0),

where the plane polar coordinates p, P, are referred to the original

center of the wire section as origin, which is the point r = a
,
2-0.

The passage from the coordinates p, P, to the cylindrical coordinates

r, z is made by
r = a — p cos p and z = p sin p (8)

and the displacement is transformed by the formulas

up
= - ur cos p + uz sin P\nJur = ~% cos P +% sin p , v

up = uT sin p + uz coslP \° \uz = uz sin P + up cos p v >
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The boundary conditions to be satisfied are that at the surface of the
wire where p = p , the stresses become

pP = -PG) = -&Po-2P» cos n
,-s n=l

(10)

Figure 1.

—

Section of one wire and cylinder by a plane
through the cylindrical axis

Heavy lines= section when stressed. Dotted circle= section of unstressed

wire. Dotted straight line= section of cylinder when uniformly com-

pressed. a6=a —po^= radius of cylinder when compressed to just slip in

the ring of wire. ae=a= radius of cylinder before compression. ad = r

(2)= radius of the contact surface at point z.

where P((3) is the unknown normal pressure exerted by the cylinder
upon the wire. It is evidently an even function of and may be written

^W = KPo + :SPn costt/3 -7T<j8<7r (11)
n=l



Snow] Elastic Problem of a Wire-Wound Cylinder 335

where

P„ = - JPG) cos nfidp = l\P(fi) cos npdp (12)

v Bo

The last integral expresses the fact that the contact ring has the range
— /S <j(3< A), since outside this range of § there is nothing touching the
surface of the wire. This angle p is also unknown and must be
determined by the solution of the problem of elastic equilibrium of the
two bodies in contact. Since j8 is obviously a small fraction of ir,

it is evident that the coefficients Pn will not differ appreciably for

small values of n. These preliminaries are in no way altered if we
have an infinite number of equally spaced wires wrapped around an
infinitely long cylinder. The stress and strain in each wire will be a
duplicate of that in the one we shall consider whose center remains
in the plane 2 = 0.

The stress components are derived from the displacement by the
general formulas

pp =
E

1+crl[f^+t]""^
E

pB =

2(l + <r)L%(>) +
d/s(p)J

[r^-K-
+i

S?]PP
E

1 + er

E (13)
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where the dilatation is

dp p p dp r r bd
(14)

According to equation (9), the formulas for transforming directional

derivatives are

<— = — cos p =- + sin P sr
bp Or oz

lb • »

b

„b-
5
-
5= sm/3^- + cos/3 5

-
pbp br bz

or

sr = — COSjS^-
br bp

dz bp

sinff 5

cos/3 5

~P~b~P

(15)

When *Wtf = and wr and i^ are functions of r and 2 only (that is, of

p and p), then the stress function % is a function of p and /3, and the

p and /3 components of the displacement are found by use of (15) in

the equations (5). These give

I|^ Wp =2(l-,)sin^x-|(|)

T^^ =2(l-,)cos^x-i|(|)
(16)
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Qy m QY COS 3 OY
where ^r- is merely the abbreviation for sin /5 *AH ^as in (15).

Similarly we find in this way from (13) the following formulas for the
stress components

p = /30eeeO

° A 2 i

E oup
pp = <r ^— Ax + r~i— >;

—

oz 1 + ff op

a Vi T ,^sin^l
2

'

5 ["I'd bx1

d2 l + <r r
v y

b . , Jfe 1/ , buA

PoWe have in mind applications to the case where the ratio — is small

(0.002) and shall have to consider displacements which are the sum
Q% ft

of terms of the three relative orders of magnitude— >
—

> and 1, although
P o Po

all three will be small due to a common factor E~ l which is of the order
of 10" 12

.

III. FORMAL SOLUTION FOR THE WIRE

In this section a formal solution will be constructed for points in a

wire, which satisfy the elastic equations and boundary conditions, but
which contain in their expression certain undetermined constants and
the unknown pressure function and its range. In the next section

the same is done for points in the cylinder, and in Section V the two
solutions are brought together in the statement of contact, by which
all the unknown constants and pressure distribution will be deter-

mined.
As a matter of convenience, a particular solution will be presented

and then a more general type of solution which is derivable from a

stress function x- The particular solution is not a special case of the

latter, but their sum gives a solution with a sufficient number of

constants to satisfy the boundary conditions.

1. PARTICULAR SOLUTION FOR A SINGLE TURN OF WIRE

It is found that whatever the constants A Ai} the following

displacement represents a particular solution of the equations of

elastic equilibrium (1).

u'6 = Ard
1 + a

u' r =(A +Al)r+"^;^ (18)

u'z
= 2 (1 — 2<r) (A-A^zlogr+ AzZ

E_„> ^_L^W_^V12 +^Z2

l+(7

E
l + «r



Snow] Elastic Problem oj a Wire-Wound Cylinder 337

If we take

4a

l-5<r-2<r2

Al ~
2(7 (l+o-)

A

A2=-A,=±^A (19)

^ =
[l+7+

LV
2
-loga ]^

* cA

(20)

1 — cr 4e

then expanding to the second order in e we find the stresses pd'=0

P7 =-^^^^Y-^ P-cos^- eC^^^Ycos2^pp
4(1-ct)Vpo/ Po 2(l-<r)\po/

4(1-0-) VPo/

> ^-^^^^"^t^^^^.^ (21)

09=%- + eC^^(p-)
2

+C l-^ P- cos /5 +eO^^Ycos 2/3 (22)
4« 1— o- \Po/ 1~ o- Po I"" o- \p /

The displacement is then given by

— — = 0- 7- -C7- cos |8

1 + cr a 1— (7 [_4€ po J

g_«/ _ 1-2^-/ . g +^£ cos ^ + 2tC lz2_^P_Y C0S 2g
l + o-a l—o- 4e 1 + crpo 1— <r \p /

# tt
' aCv v^ P- sm

1—cr \po/1 + <r a 1 + crpo 1— a \

p

The p and /3 components of u' are given by

e < = _^£. P ri- 2«- ** g +W7 iZ 22/p.\n -

l + o- a l + o- po L 1
—

o-
2 4e 1— <r\po/J

l-fo-a 1— cr 4e 1— cr\Po/_

(23)

(24)

The solution is being considered for the single turn of wire whose
center remains in the plane 2= 0. The stress and strain in all other
wires are repetitions of this.
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2. THE STRESS FUNCTION x FOR THE WIRE

Using p, /3 instead of the cylindrical coordinates r, z, it is readily
found that a solution of the equation (4) to the first order inclusive

in e is

oc™3

2KpO"W£>"
+2W£n sin "<3 (25)

71=1

To avoid duplicating certain terms included in the particular solu-

tion, we shall here take Di =D2 = 0. The constants Dn and Bn are

assumed to be of the same order of magnitude as the pressure applied

to the wire. The corresponding value of V2
x is to the first order.

00

V2
X = 4p J]

j

{£) [(n+l)(Bn - eDn+1 ) - eB,.J

w=1 ° (26)
n+2

-h(n + 2)eBn+l fR
J

sin n fi

The displacement is then found by use of formulas (16)

00

- YJ cos 7i p\(~y
1

[n(n+l)Dn+1 + (Z-^)nBn^ x

«=o

(27)

-Ml -a) (nDn +Bn. 2 )] + (^)
n" 1

(n + 2) [(n-2
\Po/

+ 4:a)Bn+1 + 2e((l-2a)Bn + 2(l-<r)Dn+2)]

+(-V
+V + 3) (n+ 4a)eBn+2

\

+S sianfiK^Y [n(n+l)Dn+1 +(Z-4t<r)nBn -. l

n=l [\P0/

-4(l-a)e(nDn + Bn^ 2)] +(^y
+
\(n (28)

+ 2e((l-2a) nBn -2(l-a)(n + 2)Dn+2)]+(j^

(n+ 3)(n+ 4:-±(T)eBn+2

n+3
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(where it is understood that Dn= if n < 3 and B w = if n < 1 ) . These
expressions enable one by formulas (17) to compute the stresses. It

is found that

3~1 ^
f

sin/5 +S sin 7ij8 (7i—l) [n (n+ 1)
Po/ J 71=2 I

n-2

and

L Po \Po/

Z>w+1 + (3 - 4cr)7i£ra_ 1
- 4 (1 - a) e (nDn +£ ra_ 2 )] (£j (gg)

+ 7i(n+l)[(n+ 2)5n+1 + 2(l-2«r)€5Il]^Y+(n+3)

[(7i+l)(n + 2) + 2(l-2<7)]e5ra+2^y
+2

}

S = 4#!- 12aeB2(
£Y+ f[652

- 24eA - 8e£d -
\Po/ I Po

-16(l+(r)e58(-)}cosj8- 2 cos7i/3J(n- l)[n(w + l)Z?n+1

+ (3-4cr)7i^_ 1 -4(l-(7)e(7iZ> ra + Bn_ 2)]^y"
2

(3Q)

+ (7i+l)[(n + 2)(n + 2) JB„ +1 + €(4(7i + 2)Z)n+2 + 2(2 + (l

-2or)n)5n)]^+(n + 3)[(n + l)(n + 2)

-2(l-2a)]eBn+2(?y
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^

(Also i3=0)

These give the stress components to the first order inclusive in e.

The boundary conditions (10) may be satisfied by the sum of the
particular solution of the preceding section and the solution here

obtaiDed. We, therefore, add to the p/3 component given by (29)

the component pjs' given by (21), and after placing p = po, equate the
sum to zero. This gives

52 =-|(2-cr)e53 (31)
1

and for 7i > 2 (remembering that Di=D2=0)

2(l-2<7) (n + 2)[n(n + l) + 2(l-2<r)]Bn+1 , n „

7i-2
jDn- 1

{n -2) (7i- 1)ti
k ;

4(1 -(r)
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tn = wif n = 3

{Vol. 7

=
20

ifn= 5

= otherwise

The remaining boundary condition is satisfied by adding to the expres-
sion (30) for pp the corresponding expression (20) for pp' and equating
their sum when p = p to — P(j8). Doing this and making use of the
corresponding equations (31)

1 and (31)
n gives, on equating coeffi-

cients of cos nfi,

and for 7i > 2

Bn =

451-4%[3^2+|^^]=-Ip

-C-Se[B l + 3D3 + 6B3 ]
= -P1

(32)°

(32),

1 Pn-l

2w(w+l)
+ 2e[nn+1 +

Bn_ x (l-2cr)(7l+
71+1 n(n+

zjBn+n
(32)

.

Since the two sets of equation (31) and (32) are valid to the first order
in € inclusive, we solve them by placing

Bn =Bn
°+ eBn

' for 7i = l, 2, 3,

Dn =Dn° + eDn
' for 7i = 3, 4, 5, (33)

where Bn°, Bn ', etc., are assumed to be of the same order as the Pn .

Each equation of the two sets then gives two relations, by equating
finite parts and by equating first-order parts. The constant 0" will

appear only in (32)
1 and can not be determined by these equations,

since the left side of (32

)

! neglects second-order terms in e so that the
retention of e

2C" there would not be justifiable.

We find by equating finite terms in equation (31)
1

,
(32)°, and (32)

n

that

tz °— — -P
8

J

P2
° =

p» =-L,Pwr\x if7i>->

The finite terms in (32 )
l give

2n(n + l)

C° =P1

(34)

(35)
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Using these values the finite parts of (31 )
n then give (since Di=D2^0)

3-4<r 1
m

Po,lfP2
-r m

3-4<r

!-3 2 ' 2\"

2^2-4

2 (7i-2)(n-l)?i 2(71-2)71
if n>4

(36)

Using these values and next equating first order terms in (32)° and
(32)

1 gives
eCf =- 2e[(l- 2a) P +P2] |

9-14cr (37)

The remaining constants eZ}'n and ei>'n may now be found by equating
first-order terms in all the equations of the two sets, but their evalua-
tion would be useless unless C were known with even greater precision

than is represented by the retention of the terms e
2C"'. In fact, if this

term e
2C" could not be found, the values of Bl and D° here obtained

would be useless for it, like them, contributes first-order terms to the

displacement, but, unlike them, it contributes only second-order terms

to the pp— and p/3 — components of stress. We consider, however,

that the average tension T in the wire is given. It is defined by

— 1 fp0 f 7^T=—
2 pdp 0ddS

TTPo Jo J -*
(38)

To compute T we note that the ^-component of stress, which is

derivable from the stress function x is

E uT

so that by the expressions (26), (27), and (28) we find that x con-
tributes to the tension the amount

TX = 8<rB1 + l2(l + cT)eB2 =-aPQ+
<r

[

1 S 28* }
cfi

4 (1—
f)

Also from (22) the particular solution contributes

(39)

— C 6(7(4 -10t) _ P. P +P2

T'-iz+
-

V,; " '

'

- 37-^2^

+

«Po+
{
\C" +\^Pi] (40)

4e ' 4(l-<0

Hence we find

?„Pl Pp + Pl .t
x

4e 2 "^4[o-+
4 <1+

1

2

!7
7^f,] (4i)

(7 D ,
1 + 2(7- 7a2 „

64825—31 9
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Since T is absolutely given, this equation determines C" in terms of

T, P , Pi, and P2 . This term C" only enters the expression for the

C
displacement in the factor j- so it is more convenient to avoid the

explicit use of e
2C" and use the formula

^T+ ,P -l±f^<Pl (42)

If we now use the values given above of Bl and Z>°, we find for that
part of the displacement in the wire which is derivable from the
stress-function x; that is, the finite terms of (27) and (28).

n-l

(43

)

:-;
(
-

) sin 71/3
71+1 VPo/ J

If we introduce the integral (12) for the Fourier coefficient Pn and
sum the series, these expressions are transformed into integrals, and
we find for that part of the displacement in the wire derivable from x

u,o>, ^1a-*)^+[3-^)2

-2(l-o-) log p P0P1 cos /3

_i!zM*
fp(n $ sin (fi

_ pf) dp>

+
2(i- g)po r* ,

cog B
1

% G>,|8) =4r {[^r (j)' + 2 ( 1 - * ) log poJpoP, sin /3

£ -p?)SJjH 1"£-^^V (46)

1—&& I pV) si)

P^

Po
1

1 °')*cos (fi-VW

2(1
; x sin (p-p) logW
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where R is the distance from the point of integration p ,
/3' upon the

arc of the section of wire, to the point p, /3 within, and \j/ is the angle
between R and the interior normal, so that

*-/-** cos fp-jn i'j and g gfflf^^ tti

When the point p, |8 approaches as a limit any point p ,
on the cir-

cular boundary of the wire section, then .

R = 2pQ sm
$-0'

=
~(/5-/3')-f

if j8-j8'<0

(48)

Resolving the displacement in the direction of increasing r, we find

from (43) and (44) the following expression for the uT which is due
to the stress function

uT (p, j8)=

1 + <t(2(1 -p)P
£

^-2 f p
(/3 /) cos p iog g^/

+

— cos )3 us

+^ 2g"

)y° f °

P(/T) sin 0' <W (49)

-(l - ^^ P° ^fcos (|J + ^) + 2 c-Bin* (sin (/3 - 0') sin

#)j^ - 2(l-(r) log po-poPi + (1 - <r)pPo cos j8 +

p Pi cos

3-4(7

When the point p, j3, is on the contact ring, /3
2 like /3'

2 becomes negli-

gible and (49) reduces to

«rW) =
-4r{

2(1 /)pp

J|*
p^) logw + d - ^)poPo

-ft

+1^-^+ 2(1-0-) log p ]poPi (50)

Since this represents only the contribution of the function x, we
must add to it the corresponding component given by equation (23)
for the particular solution. Using the value of C we have found,
this is

Mpo, 0) =
CLc

(l-2(7-O2
)(2

7+oP )+(7(l-o)P1#(1-0-)

+^j-2o[(l-2o)P +P2

]

2(l-o2
) (l-2o-)-(l-2(7-(72

) (l+2o--7o2
)

(51)

Pi
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The total u r component on the contact surface is the sum of (50) and
(51).

Since p is a very small angle, we may write zQ = p /3 and z = p /3 so

that the definitions (12) for Pn may be written

Pn = -\ P(p')cosnp' dp' =— P(z') cos — dz'
KJ -fa irpoj -zo Po

Since the width 2z of the contact strip is obviously very small com-

pared with the radius p of the wire, we may here write cos — =1
Po

1 /nz'\2

— ^ ( —
J
and for small values of n, such as n = 1 or 2, this is equal to

1 to the first order, inclusive. That is, the. approximations already
made do not justify us in distinguishing between P , Px , and P2 , and
require that we place

P =Pl
=P2 (52)

If we denote by Xi, X2 , and X3 the three positive elastic constants which
depend only upon the dimensionless a

Xi-
l-2<r-(r2

_ _<r (2-Sa-a2
)

(lfcr) (1-cr) 2
A2
-(l + c) (1-aY

_ 6-7cr- 21(7
2
-t-35(7

3 -5a-4

A3_
4 (l + o-) (1-cr) 3

we then find by addition of (50) and (51) for the r component of the
total displacement of those particles of the wire which are on the
contact surface, where p= po and — Zo<Cz = p fi<^zQ

u r = c{a [\iT+ X2P ]-poPo[X3-2 log p ]

--S P(z')\oz\z-z'\dz\
(54)

where

1-V
C=~E
when

o- =K, X, =%, X2 =}i and X3 =1X (55)

so that these three positive constants are of ordinary magnitude.
All of the terms in the second member of (54) are small, due to the
factor c which is of the order of 10~ 12 absolute cgs. units. Since a is

very nearly a — p it is evident that the terms in p Pp_and the integral

are small compared to the first term, and the tension I
7

contributes the
greater part of this term.

It is important to recall what is our hypothesis as to the initial or
unstressed shape of the wire in order to properly interpret the dis-
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placement (54). The initial r coordinate of any point z on the sur-

face of the wire which later comes into contact with the cylinder was

/i o\ Po&
2

Z2

a -po+Po(l-cos P) =a -p +-^- =a -p +—

Therefore, when equilibrium is attained, its r coordinate is

z2

r(z)=aQ-p + 7r-+ur (56)
^Po

Or using (54)

z2

r(z)=a -p +2- +c {aolXiT+^Po]-

p

QP [\3 -2log Pe]

-- rP(z')log\z-z'\dz'
TTJ-Zo

(57)

The small quantity (
—

) like (
—

) is by no means negligible here, but
\Po/ \Po/

its neglect in those terms of (57) which contain the factor c was jus-

tified since c is of the order of 10~ 12
. The unknowns in the second

member of (57) are a , P , z and the pressure distribution P{z).

When the second member of this equation is known, it becomes the
equation of the curve which is a section of the surface of contact, by a
plane through the z axis^ We may obtain another independent

integral relation between T, r(z) and P (z) by considering the equilib-

rium of a segment of the wire included between two planes through
the z axis corresponding to 0=0X and = — 1# At each circular sec-

tion the total tension T acts on the part of the wire considered and

the two amount to a force 2 Tsin dx =2t p
2 T sin lf directed toward

the z axis. This force is counter balanced by the component in the
opposite direction of the pressure exerted by the cylinder upon the

segment of the wire which is

whence

so that

(cos dde \P(z) r (z) d z =2 sin 6X I P(z) r (z) d z
J-0i J-zo J-zo

2 T sin 0i =2 sin 17rpo
2f=2 sin O \P(z)r (z) d z

J— 20

-if?(2)?W^=T (58)
^PO J-zo

This relation will be used after we know more about the form of the
function r(z).
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IV. FORMAL SOLUTION FOR THE CYLINDER

In this section a formal solution of the elastic equations and bound-
ary conditions will be constructed for points in the cylinder. Like
that obtained above for the wire, its expression will involve the
unknown pressure distribution and its range.

In this case the boundary conditions to be satisfied by the stresses

at r = a are

rz =

r0 = O

;

/o+£/„1 r . VI C
nZ

n COS
—

n=l

> for — oo < z < + oo (59)rr= — P(z) = —

where

&=h, f (̂2) cos ¥ dz =hP(s) cos t dz (60)

Since 2wp is the distance between centers of the endless set of wires,

the pressure P(z) must be a periodic function of z with period 2-wp.

The Fourier's Series in (59) for P(z) has a different range from the
corresponding development (11) and hence the coefficients Pn and /„
are different. For the coefficients Pn defined by (12) may be written

(letting 0-£)

If 20

•-£
\
P{z)

nz ,

cos — dz
Po

which shows by comparison with (60) in the particular case, n = 0,

the relation

pfo= Po Po= ~ (P(z)dz (61)
7TJ -z

We shall be able to satisfy the boundary condition (59) by a displace-

ment which at all points in the cylinder is derivable from a stress

function x satisfying the equation (4). A stress function which is a
particularly simple solution of (4)

^IT^-^-ft2-^3

]
(62)

gives rise to the displacement by (7)

W = (63)
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with the stress components

rr = BB= - -^fo = constant

347

(64)

All other stress components are identically zero, and, in particular,

the cylinder is not under longitudinal tension, 22=0. If J and Ji

denote Bessel's function, we begin with a solution of equation (4)
of the form

. %rif a r (inr\ . -r, inr T /inr\] . nz ,._,.

which gives

„ f z _ » n2
r /inr\ . nz

Vx=~ti 2^-
2
BnJA — ism —

This gives by the formula (6) the dilatation

(66)

l+o- 1 — 2(T 02
__JJ5/o , rt \ ltt

3
t, T /inr\ nz) ,n„ s

ff

(i+^+2 2jp B»J
»(ir)

C0S
p <

67 >

n=l

Hence, the formulas (7) give the stress components

r$=

rz

rr

00

Snz
. nz\ . T /inr\ D Vinr , (inr\

,
_ ,., N T /mr\"l)

W=l

n° 712 {

—h cos—
2? 2?

~~2jr°~2j

-5„[(l-2«r)

^4-re J.I

(inr

, /inrX
/inr\ l \pJ

_"° \ V ) inr/p __

(inrXl

(68)

A^\-Sj
If we let

OL=
na

V
(69)

the vanishing of fz at the boundary is assured by taking

A _ iotJp (id) + 2(1-0-) Jx (ia) R (70)

Using this relation and satisfying the remaining boundary condition
of (59) we find

An= Q>Zl
2 (1 — <r) %J\ (ia) — aJQ (ia)

n2
(ia)

2 (JQ
2 (ia) + J? (ia)) - 2 (1 - a) Jx

2
(ia)

/«

-„V iJi (ia)

(71)

Bn a
n2

(ia)
2
(Jo

2
(ia) +Jx

2
(ia)) -2(1-<j)Jx

2 (ia)^
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All the stress and strain components in the cylinder may now be
found. In particular we find by (5) for the boundary value of uT

uT {a, z) = — ac'

where

y.

, nz
fn cos —

2(1+*')^^^(W)}* 1]- 2^
;'= l-^- and a', E'

(72)

(73)

are now used for a, E to distinguish between the constants of the wire
and the cylinder.

When - is less than 5, reference to tables of Bessel's functions show
a '

that there will be an error of less than 1 part in 10,000 made by using
the asymptotic expression for these functions, which enables us to

., na
write since a =—

P

^i(mr+{
]
-55+1
V

(74)

neglecting terms of order of - which is 0.001 when 2x^ = 0.1 and

a= 15. Hence, we replace the exact expression (72) by

CO /» IV&

/o ,2? VI ~*

2(l + er') a Zj n n p
uT (a, s)= —ac'

v2

or since we neglect^ m comparison with 1

7T+

a'

ur (a, z) = —ac'

If we now place

/o 2p\l/» cos

2(1 +<r') a Zj

712

71=1 W
(75)

/o=— by (61) and/„ =— V°P {z') cos— &fJ °

p
J V

'
^

7T2V20 P

this becomes

u r (a,z) = — c'{ ap P
{

[2p(l +

1 CZO oo

^r + - P(2')^'S

nz nz
2 cos— cos—

P V
n

= -c' ap Pc
i rzo «

7T+± P{z')dz'^
) Kj-zo n=l

COS- (Z+ Z') + COS- (S— 2')

712#(i+ff

= -c4 ?*f°,x +- r«P(3')^' ib'-cos- (2-2')
l22>(l + <r') ttJ-?;

v ;
„=i.7i tp

(76)
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since P{z') is an even function of z
r

. Now if -x- denotes the absolute
value of x

Hence (76) becomes

S-cos- (z— z') = —log 2 sin
z—z
2p

ur {a,z) = "^{[^(l + cr')
* 2 loS^JPoP°

2 f 2o

-- P{z')\og 2^sin
g—

2

2p
dz' (77)

The negative of the second member gives the shrinkage in radius of

the cylinder at any point z. The constant term represents a uniform
shrinkage of radius, the variable part is a periodic function of z which
is small compared to the constant term.

. ... . z z*When the point (a, z) is inside the contact ring both - and — are of
r Jr

order of magnitude of — and their squares are negligible so that (77)
if

becomes for — z < z < z

ur (a, z) = -^^(l +O + 2 log PJqP°

2 C Z0

-£\ P(s')log z — z dz'\(7$)

Since the particle z to which this refers, had the coordinate r = a when
the cylinder was unstressed, the distance of this particle from the z

axis when equilibrium is attained is r(z) = a + ur (a, z). Using (77)
this gives for the deformed shape to the cylinder the equation

(g) =« - c'{
[22>(1 + „>) + 2 log ffjPoPo

2 f z °~ P(z')log
7TJ-20

2 p sin
2p

dz' (79)

which holds for all values of 2 and is a periodic function of z with
period 2^ which is the distance between centers of the endless series

of wires, all alike and uniformly spaced, which are wrapped tightly

around the cylinder, whose unstressed radius was a. The z coordi-

nates of the wire centers are z = 0±2irpk where k is an integer.

When the point z on the surface of the cylinder is on the contact
area, of say that wire whose center is at z = the deformation of the
cylinder is then given by

r (z) = a - c'{[
2iK1 +

+ 2 log 2>]PoPo

-- r° P(z')log\z-z'\dz'\ (80)
TTj-20 J
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V. DETERMINATION OF THE PRESSURE DISTRIBUTION
AND THE CONTACT RANGE

The Sections III and IV have been concerned with the construction

of formal solutions giving the stress and strain in the wires and
cylinder which satisfy the boundary conditions, but which contain
in their expression the unknown pressure distribution P{z), the range
of contact 2z , the constant P , and the constant a , the latter being
the distance of the center of a circular turn of wire from the z axis

before the (compressed) cylinder was inserted. In this section we
take over these results, and since the ideas here involved are different

we number the equations anew in order to concentrate upon the
present argument.
The equation of the contact surface, or dent in the cylinder, Section

IV, equation (80), we rewrite as

r(z)=a-c'^^7^-h2logpj PoP + ^-j^P(z') log\z-z'\dz' (1)

The equation of the dent in the wire, Section III, equation (57) is

z
2

r(z)=a -po + 7y- + c[a (^T+^Pq) ~ (X3
- 2 log p ) p P ]

-~
\
Z

_l
P (z') log

I

z- z
f

I
dz' (2)

where by Section IV, equation (61)

PoPo=lf
?
°P(z')dz' (3)

and by Section III, equation (58)

T=irp 2T= f*°r(z)P(z)dz (4)

The fact of contact is implied by r{z) being the same in equations
(1) and (2). Eliminating it gives the integral equation to determine
the pressure distribution P(z) and its contact range 2z

-4Z 2 (C + C')p -r, ( /\ l I /I J f a Z
2

¥>\P(z f

) log 1

2-

2

r

|
dz'=A — ir- (5)Zq Zq Zq

where the constant A (independent of z) is

4=^(a + p -a (l+XlCf)-[c(^-x3 + 21ogp„)

+ C'(2p(l + ,r')
+ 210g?

)]
PoPc (6)
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To solve (5) we recall that the logarithmic potential at any point z

on a thin cylindrical strip of width 2z upon which there is a surface

density of electricity of amount Jl-(-) if

- 2JiVKU iog i-^w=^° (i+iog |o)-^
2

(7)

Comparing this with (5) shows that the solution of that equation is

obtained by imposing the two conditions

P(z)
y/z,

2-
for—

Z

<2<2

and

2(c+ c')po

A = ^„(i+log|)

(8)

(9)

If A were known (9) would determine z and (8) then give P(z).

However, A is a function of the unknown z , a , and Pa as shown by
(6) so that (6) and (9), together by elimination of A give one relation

between these three unknown constants from which a may be later

found. The equations (1) and (2) will thus be rendered compatible
by (6), (8), and (9). The next equation (3) becomes by the use of (8)

2xp

which may be written

"°P°
=
2rjc + c')fX^^ dz= So'

4po(c + c')

^ = V4(c + c')Po
Po

(10)

To satisfy the remaining condition (4) we first replace the integral in

(1) by its value from (5). This gives by use of (10)

r(2 ) = a(l-^P ) +^l
7Fo

=<I(l-c'F [6-^(|)
2

]J
(11)

where

b = Po —+gg/l+log = x f, m)a') a\ 5
(c + c')Po

2
^o/

(12)
2p(l +

The equation (4), therefore, becomes

*»°T=2WFo/-la(1 ~ bC
'

Po)+W^o *] V^^ dz

which gives

PoT-a(l w^o)4^+?)+xL4(c + c
/

)J
( }
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Expressing z in terms of P by (10), this equation gives the following

to determine the one unknown

PoT

According to the assumptions underlying this derivation — is of the
a

order of magnitude of, say, 10~ 3
, while c and c' are about 10~ 12

, while

the average tension of the wire, T, is say (10)
9 dyne cm-2

(correspond-

p c'T .

ing to a total tension of 7 pounds). Consequently the term ——- is
a

10~6
, which shows (since b is of the order of magnitude of unity) that

aP—= =1 (to 1 part in 1,000,000). We have, therefore, the final value

of P .

Po~ (15)u a x

whence the final value of the width 2 z of the contact ring becomes

?o
= 4p ^2z = 4P(fV(c +c')^ (16)

a

The equation of the contact ring becomes

,(S ) = a-p c'T[6-2^(fJ] (17)

where the b is to be computed by the formula

b-m^^b +^ji^wi (18)

The pressure distribution is given by equation (8). The remaining
constant a (the initial distance of wire center from z axis) is found by
eliminating A between (6) and (9) to be [neglecting 1 part in 1,000,000

;

that is, (cj1

)
2 compared to 1]

a = a+ p - a\icf- 1 p [bc'f+ (Xx + \2)cf] (19)

The shape of the cylinder at points outside a contact ring such as
for z < z < 2-n-p— zQ may now be found by using the values of P and
P(z) from (15) and (8) in the equation (79) of Section IV. This
leads to

(20)
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Now

-f -W 1 - (
—

) log ( sin— cos— - cos^ sin— ) ^2'^- cos
75

cos ^- sin -
2p 2p 2p 2p

When the point z is near the halfway point between the two wires,

z • 2 • • z
sin -— is near unity and cos -— is small, while cos -— is near unity

2 p
J

2 p 2 p
J

z'
and sin -— is small. Hence (as before), by neglecting second-order

A p

terms of the order of ( — 1 we find

J-2oV \z

(?)

V i • z— z' t , TTZq -, . z

) log sin -^- az =T log an ^
which is a good approximation if z is not very close to a contact sur-

face. Hence, the shape of the cylinder at points not very close to a
contact ring is found by equation (20) to be very approximately

r (*)=*- Mf f^Lp^-^log 2 sin^] (21)

This shows that at a point midway between two wires, where, say,

z = irp

^^-^G^Wr^ 4
]

(22)

This is the thickest part of the cylinder. Its thinnest part is at

2 = 0, where r = r(0). The difference between its greatest and least

radius is found by (17) and (22) to be

r(n0-r (o) =P^^[l+log^^] (23)

This is seen to be small compared to the compression at the mid-point
which by (22) may be written

«-r(«g)-^r[
2g(f+)r0 -flog4 (24)

Hence, the cylinder is almost uniformly compressed with relatively

shallow depressions where the wires touch it.

To find the deformations of the wires, we must use the values here

found P = Pi =— in the equation (42) of Section III, which gives
0/

-^Kl'-^F^)] ™c „
4e
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If we neglect terms of the order of 1 part in 1,000,000 and consider

—
° and cT, as each of the order of 10~3

, then this becomes
a '

C ™L . Poo
-

4V r
t

1+
ifi <25 '>

The components of the displacement in the wire corresponding to the

stress function x are, therefore, of the order of 10~ 12 and may be
neglected, but the particular solution of Section III gives by equation

(24)

% (p„, p) = -2^2 - a„c ?A, (l + *£) cos fi (26)

^(po^-aocTx^l+^sin/J (27)

The cylindrical components of this displacement of points initially

on a circular section of the wire are

«, (p„, ft =^fX,(l +
Pf)+^"° cos /J (28)

«z (Po,ft =^- sin/3 (29)

In these four equations a may be replaced in terms of given con-
stants by means of (19).

The two equations (26) and (27) show that the points on the cir-

cular section of the wire suffer a uniform contraction of radius,

together with a translation in the r direction, both of which leave its

section circular. The amount of the contraction of radius of the
wire is given by

<rTa po aTpo ,onNPo-p=^b^ =
Tb- (30)

The translation is much larger, being

«r(po,|)-aocrXx(l + M) (31)

The result reached in equation (30) is of interest in absolute meas-
urements in which the inductance of a single-layer solenoid is com-
puted from measurements of the diameter of the solenoid (over the
windings), its length and the pitch of the windings, and from the
radius p of the wire measured before it was wound. The formula
for the inductance requires a knowledge of the radius a' of a current
sheet which passes through the centers of the wires. If D is_the

D D T
measured over-all diameter, this radius is a f =„ — p= ~ — po + c-^po-

For the solenoid ^ = 14,5 cm approximately; p — 0.03545 cm; <r= ~;
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2£=1.2(10) 12 and T=8(10)* dyne cm^, since the wire was wound
T

with a tension of 7 pounds. Hence, o-^pQ = 8(10) 6 cm, so that the

correction due to contraction of the wire alters the radius of the
current sheet by 1 part in 2,000,000.

VI. SUMMARY

It has been found that in the case of a long circular cylinder of
radius a, uniformly wound with equal, and equally spaced, wires of

radius p , each with tension T, that the pressure distribution under
any wire (such as the one whose center is in the plane 2 = 0, the
z axis being the axis of the cylinder) is

P(g) =
2(C

g

+7')po
for~ g°<2<2°

where the width of the contact ring 2z is given by

22 = 4PoJ (c + c')PJlT

where T= T/irp 2 = average tension in the wire, and

1-cr2 ,_ 1-V2

C " E '

C
E'

a and E being Poisson's ratio and Young's modulus, respectively, for

the wire material, while cr', E' refer to the material of the cylinder.

If the constant b is defined by equation (18) of Section V, the shape
of the dent in the cylinder in which a wire makes contact is

r(z) = a-poc'l(b- ^(jYI for -z <z<z

where r(z) denotes the distance from the z axis to the surface of the
cylinder. At points on the surface of the cylinder outside a contact
ring, and distant from the edges of one by a quantity which is not
small of the order of z , the shape of the cylinder is given by the peri-

odic function of z

where 2wp is the distance between centers of adjacent turns of wire.

The cylinder is almost uniformly compressed, with a relatively small

bulge between the wires. The circular section of the wire undergoes

a practically uniform contraction of radius, Po
- p=-^Po, together

with a translation in the r direction (away from the axis of the cylin-

der) of amount a c TXi ( 1 +— ) where Xi = 7^—

—

r-^t r-9 and where
V a / (l + o-) (I-*) 2

a is the distance of the center of the wire section from the axis of the
cylinder when the turn of wire is unstressed. It is given by equation
(19) of Section V.
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It is believed that this evaluation of the pressure distribution is

new. It differs from that of H. Hertz 4 in two respects. In Hertz's
problem the area of contact was the infinitesimal neighborhood of a
point so that its boundary was found to be an infinitesimal ellipse,

and the integral equation determining the pressure distribution a
Newtonian potential of that distribution. In the present problem
this area has one large dimension, since it is a ring of small width
2z upon the face of the cylinder and the integral equation deter-

mining the pressure distribution is its logarithmic potential, a differ-

ence which seems natural.

The other point of difference is that Hertz considered the pressure
to be so local in its effect that the stress and strain produced by it

were confined to its immediate neighborhood so that he considered
the two bodies as separated by an infinite plane. This magnification
of the region so simplified his problem that the pressure and the
pressure ellipse could be evaluated without reference to the actual
shapes of the two bodies. However, as all points in this infinite

plane were in reality points very close to the contact ellipse, his

results (stress and strain) were only applicable to points in the immedi-
ate neighborhood of the contact. The problem here solved is con-
siderably more general for we first formulated the elastic displace-

ment at all points in a wire in terms of an integral over the pressure
area, involving the unknown pressure distribution, which satisfied

the condition of no stress at all other parts of the boundary of the
wire. Only when the point was on the contact area did this integral

reduce to a (logarithmic) potential integral. Similarly the elastic

displacement at any point in the cylinder was formulated in terms of

an integral involving the pressures of all the wires, which displace-

ment satisfied the condition of no stress at points on the cylindrical

surface between contact areas. When the point on the cylinder
approached a point on a contact surface, a potential integral again
appeared. By expressing the fact of contact between wires and
cylinder, an integral equation resulted which determined the pressure
distribution and its range. This being found, we have determined
the deformation and stress not only in the immediate neighborhood
of the contact area, but at all points in wires and cylinder. It must
be pointed out, however, that the results here obtained are by no
means exact solutions of the elastic equations. They are approxi-

mations limited by the fact that the ratio — of the radii of wire andJ a

cylinder are small, and three relative orders of small quantities -»
Po

1, — are retained. The problem has also been limited to the case

where the pitch of the windings 2irp, (that is, distance between wires)

is of the same order as the radius of a wire, but the removal of this

restriction is obviously very easy, as it would not involve any modi-
fication of the solution for points in a wire, but only for points in the
cylinder, and for this part of the problem we obtained an exact
solution.

Washington, March, 1930.

* H. Hertz, J. f. Math. (Crelle), Bd. 92; 1881.


